Characterizing the muon veto response for the DEAP-3600 dark matter search

Ameen Ismail

16 August 2017

Introduction: DEAP and the muon veto system

- Dark matter Experiment with Argon Pulse-shape discrimination
- Detector surrounded by water tank
- Muons passing through produce Cerenkov light
- Viewed by 48 muon veto PMTs

A look at the detector

Relevant analysis variables

muonVetoN/nhit

- Number of muon veto PMTs triggered in an event
- Trigger condition: waveform must fall some threshold amount below baseline

qPE

- Estimates number of photoelectrons (PE)
- Defined as $\sum_{PMTs} \frac{charge deposited}{mean single PE (SPE) charge}$
- Requires SPE calibration

Raw waveforms

- Digitized into 192 samples
- Baseline value \sim 3900 ADC
- Charge is baseline-subtracted integral
- Multiple peaks are possible

イロト 不同下 イヨト イヨト

Methods

- Looked at events with muonVetoN ≥ 2
- Dependence of charge disitributions on muonVetoN and on nPeaks
- Made SPE charge distributions and fitted them

イロト イポト イヨト イヨト

Charge distributions: muonVetoN

All functioning PMT's PRELIMINARY Relative frequency nHit < 10 10 <= nHit < 20 20 <= nHit < 30 30 <= nHit < 40 40 <= nHit <= 45 10-2 10⁻³ 10-4 20 80 120 0 40 60 100 140 160 180 200 individual PMT charge (ADC)

୬ < (~ 7 / 12

Charge distributions: peaks

All functioning PMT's PRELIMINARY 0.02 0.02 0.018 0.018 1 peak 2 peaks 3 peaks 0.014 0.012 0.01 0.008 0.006 0.004 0.002 20 40 60 80 200 100 120 140 160 180 individual PMT charge (ADC)

SPE charge sample distributions

SPE and mean charges

qPE distributions

୬ <u>୦</u> ୦ 11 / 12

- Examined effect of muonVetoN and number of peaks on charge distributions
- Obtained mean SPE charges for all functioning muon veto PMTs
- More qPE distributions are forthcoming