Ameen Ismail CoSy HEP 12 November 2022

Ameen Ismail CoSy HEP 12 November 2022

(Z-portal continuum dark matter models)

arXiv:2210.16326 with C. Csáki and S. J. Lee CoSy HEP

12 November 2022

Dark matter and WIMPs

WIMP DM typically motivated from Higgs naturalness, "WIMP miracle"

Minimal models under pressure from DD experiments

Ways out: abandon WIMP paradigm, or more sophisticated WIMPs The Waning of the WIMP? A Review of Models, Searches, and Constraints (2017)

Giorgio Arcadi^a Maíra Dutra^b Pradipta Ghosh^{6,c} Manfred Lindner ^a Yann Mambrini^b Mathias Pierre^b ^{an} Stefano Profumo^{d,c} Man Farinaldo S. Queiroz^e

(2016)

Toward (Finally!) Ruling Out Z and Higgs Mediated Dark Matter Models

Miguel Escudero,^{a,b} Asher Berlin,^c Dan Hooper^{b,d,e} and Meng-Xiang Lin^d

First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment

The ULX-ZEPIN I(2) experiment is a dark matter detector covered on a shut-phase sum increporter distribution of the strength of the strength

Continuum dark matter to the rescue

Scalar Z-portal continuum DM introduced last year (2105.07035, 2105.14023)

Kinematic suppression of DD cross sections, continuum decays

Today's goal: generalize to fermion, vector continuum DM

Casha Cashi, "Sungwoo Hong,"^{A,b,} Gowri Kurup,^{a,d,} Seung J. Lee," Maxim Perelstein," and Wei Xue¹ Deportal Continuum Dark Matter Casha Cashi, ¹Sungwoo Hong, ^{1,2,4} (Song, L. Lee, ¹ Maxim Perelstein, ¹ and Wei Xue⁴ "Department of Physics, EPP, Content Uncernst, Hong, Y. Liss, ¹ Maxim Perelstein, ¹ and Wei Xue⁶ "Department of Physics, EPP, Content Uncernst, Hong, Y. Liss, ¹ Sung, Y. Liss, ¹ Sung, Y. Liss, ¹ Sung, Sung, Y. Liss, ¹ Sung, Sung, Sung, J. Lee, ¹ Maxim Perelstein, ¹ and Wei Xue⁶ "Department of Physics, EPP, Content Uncernst, ¹ Maxim Perelstein, ¹ and Wei Xue⁶ "Department of Physics, Chineralty of Olferd, Park BL, Oxford OX, 371, United Kingdom ¹ Department of Physics, University of Florida, Gamessille, FL 20211, USA

DM

Continuum dark matter to the rescue

Scalar Z-portal continuum DM introduced last year (2105.07035, 2105.14023)

Kinematic suppression of DD cross sections, continuum decays

Today's goal: generalize to fermion, vector continuum DM

The Continuum Dark Matter Zoo

Csaba Csáki,^a Ameen Ismail,^a and Seung J. Lee^b

Gapped continuum crash course

Scalar example:
$$S = \int \frac{d^4p}{(2\pi)^4} \phi^{\dagger}(p) \Sigma(p^2) \phi(p)$$

Define spectral density $\rho(\mu^2)$:

$$ho(\mu^2) = -2 \operatorname{Im} rac{1}{\Sigma(\mu^2)} \quad \Leftrightarrow \quad rac{1}{\Sigma(p^2)} = \int rac{d\mu^2}{2\pi} rac{
ho(\mu^2)}{p^2 - \mu^2 + i\epsilon}.$$

Ordinary particle: $\rho(\mu^2) = 2\pi\delta(\mu^2 - m^2)$

<ロ><目><日><日><日><日><日><日><日><日><日><日><日><日</td>

Gapped continuum spectral density

Gapped continuum spectral density

Gapped continuum: $\rho(\mu^2) = 0$ for $\mu < \mu_0$ ("gap scale")

Can arise from 4D eff. theory in 5D warped construction, but not our focus today see: 2105.07035; Cabrer, von Gersdorff, Quirós 0907.5361; Megras, Quirós 1905.07364

I do care that ρ takes a universal form near μ_0 :

$$ho(\mu^2) = rac{
ho_0}{\mu_0^2} \sqrt{rac{\mu^2}{\mu_0^2}-1}$$

Fermions and vectors

Everything carries over from scalars:

$$egin{split} S_{ ext{fermion}} &= -i\int rac{d^4p}{(2\pi)^4}\overline{\psi}(p)\Sigma(p^2)rac{\overline{\sigma}^\mu p_\mu}{p^2}\psi(p)\ S_{ ext{vector}} &= rac{1}{2}\int rac{d^4p}{(2\pi)^4}A_\mu(p)\Sigma(p^2)\left[\eta^{\mu
u}-(1-rac{1}{\xi})
ight]A_
u(p) \end{split}$$

$$\rho(\mu^2) = -2 \operatorname{Im} \frac{1}{\Sigma(\mu^2)} \quad \Leftrightarrow \quad \frac{1}{\Sigma(p^2)} = \int \frac{d\mu^2}{2\pi} \frac{\rho(\mu^2)}{p^2 - \mu^2 + i\epsilon}$$
near gap scale: $\rho(\mu^2) \sim \frac{\rho_0}{\mu_0^2} \sqrt{\frac{\mu^2}{\mu_0^2} - 1}$

7/18

Interactions

We can couple continuum fields to other fields just like ordinary particles, e.g. $\overline{\psi} Z \psi$

All continuum effects are captured by the phase space integral:

$$\int \frac{d\mu^2}{2\pi} \rho(\mu^2) \int \frac{d^3 \vec{p}}{(2\pi)^3} \frac{1}{2 \sqrt{\mu^2 + |\vec{p}|^2}}$$

Boltzmann eq., etc. all unchanged w.r.t ordinary particles

Fermion model

Continuum singlet ψ_L (gap scale μ_0), Dirac fermion $\chi(2)_{1/2}$ $\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{\psi} + \mathcal{L}_{\chi} + \mathcal{L}_{int}$,

$$\begin{aligned} \mathcal{L}_{\psi} &= i \overline{\psi}_{L} \Sigma(p^{2}) \overline{\sigma}^{\mu} p_{\mu} \psi_{L} \\ \mathcal{L}_{\chi} &= i \overline{\chi}_{L} \overline{\sigma}^{\mu} D_{\mu} \chi_{L} + i \overline{\chi}_{R} \sigma^{\mu} D_{\mu} \chi_{R} - \mathcal{M}(\overline{\chi}_{L} \chi_{R} + \overline{\chi}_{R} \chi_{L}) \\ \mathcal{L}_{\text{int}} &= -\kappa \overline{\chi}_{R} \psi_{L} \mathcal{H} \end{aligned}$$

Integrate out χ ($M \gg \mu_0$), leads to effective Z-portal DM:

$$\mathcal{L}_{\mathrm{eff}} = \mathcal{L}_{\mathrm{SM}} + \mathcal{L}_{\psi} - rac{g_Z \sin^2 lpha}{2} \overline{\psi_L} Z \psi_L$$

(also dim-5 Higgs coupling $\sim (\sin \alpha / \nu) H^{\dagger} H \overline{\psi_L} \psi_L$)

A D A A D A A D A A D A A D A A D A

Relic abundance

^{10/18}

CMB constraint

CMB constraint

Continuum decays reionize hydrogen

Decay width
$$\sim rac{g_Z^4 \sin^4 lpha \mu_0^5}{m_Z^4} imes \left(rac{\Delta \mu}{\mu_0}
ight)^{13/2} ($$
w $/ \ \Delta \mu = \mu - \mu_0)$

Estimate $\Delta \mu$ by solving $\Gamma = H(t_{\rm CMB})$; heavier states would have already decayed

Require $\Delta\mu < 2m_e$ so $\psi o \psi e^+e^-$ kinematically forbidden at $t_{
m CMB}$

DD suppression

DD suppression

Accessible mass range $\mu' \in (\mu_0, \mu_0 + \Delta \mu)$, where $\Delta \mu \approx \mu - \mu_0$ Matching $\Gamma = H_0$:

$$\mu - \mu_0 \approx 0.4 \text{ MeV} \frac{(\mu_0/100 \text{ GeV})^{3/13}}{(\sin^2 \alpha/0.01)^{4/13}}$$

Spectral density integral (using universal form near μ_0):

$$\int_{\mu_0^2}^{(\mu_0 + \Delta \mu)^2} \frac{d\mu^2}{\mu_0^2} \sqrt{\frac{\mu^2}{\mu_0^2} - 1} \approx \frac{2 \times 10^{-8}}{(\sin^2 \alpha / 0.01)^{6/13} (\mu_0 / 100 \text{ GeV})^{15/13}}$$

Enormous kinematic suppression of DM-nucleon σ !

Vector model

Abelian gauge field V_{μ} , continuum w/ gap scale μ_0 $\mathcal{L}_{\rm eff} = \mathcal{L}_{\rm SM} + \mathcal{L}_V + \mathcal{L}_{\rm int}$, $\mathcal{L}_V = \frac{1}{2} V_{\mu} \Sigma(p^2) \left[\eta^{\mu\nu} - (1 - \frac{1}{\xi}) \right] V_{\nu}$ $\mathcal{L}_{\rm int} = \frac{g_Z \lambda}{4} \epsilon^{\mu\nu\rho\sigma} V_{\mu} Z_{\nu} V_{\rho\sigma}$

"Generalized Chern-Simons" interaction would arise from integrating out heavy fermions

Relic abundance

16/18

Outlook

Z-portal continuum DM models are experimentally viable

- ▶ Fermion case: $\mu_0 \in (60, 200)$ GeV
- ▶ Vector case: $\mu_0 \in (35, 90)$ GeV

Detection prospects:

- ▶ $\mu_0 > m_Z$: indirect detection
- ▶ $\mu_0 < m_Z$: maybe collider signatures?

Many opportunities for further continuum model building!

Thank you!

more info: arxiv.org/abs/2210.16326 ai279@cornell.edu ameenismail.github.io

Derivation of fermion model EFT

Classical EOM for χ^0 :

$$\chi_L^0 = -\frac{\kappa \mathbf{v} \mathbf{M}}{\sqrt{2}(\partial^2 + \mathbf{M}^2)} \psi_L, \quad \chi_R^0 = -i \frac{\kappa \mathbf{v}}{\sqrt{2}(\partial^2 + \mathbf{M}^2)} \overline{\sigma}^\mu \partial_\mu \psi_L$$

Substitute back into action, leads to effective coupling

$$-\frac{g_Z}{2} \left[\frac{\kappa v M}{\sqrt{2}(M^2 - \mu^2)}\right]^2 \overline{\psi}_L \not Z \psi_L$$

Take limit $M \gg \mu_0$, write in terms of eff. mixing angle

$$\sin \alpha = \frac{\kappa \mathbf{v}}{\sqrt{2}M}$$

Higgs coupling from *t*-channel exchange of $\chi^0_{R, \mathcal{O}}$, $z \in \mathbb{R}$ and $z \in \mathbb{R}$

19/18

Embedding vector model in consistent EFT

Introduce four Weyl fermions with $(U(1)_D, U(1)_Y)$ charges

$$\psi_1(1,1), \quad \psi_2(-1,1), \quad \psi_3(0,-1), \quad \psi_4(0,-1)$$

All gauge anomalies cancel except $U(1)_D^2 U(1)_Y$

Restore with GCS term: $\frac{g_Z\lambda}{4}\epsilon^{\mu\nu\rho\sigma}V_{\mu}Z_{\nu}V_{\rho\sigma}$, with

$$\lambda = rac{2g_D^2}{3\pi^2}$$

Give ψ 's masses with coupling to scalar with unit dark charge (could be abelian Higgs needed to lift DM would-be zero mode)

DD kinematic suppression details

Max accessible mass for outgoing DM in $\psi(\mu)N \rightarrow \psi(\mu')N$:

$$\Delta \mu = (\mu - \mu_{0}) + q extsf{v} - rac{q^{2}}{2 \mu_{\psi N}}$$

(q= momentum transfer, $\mu_{\psi N} \sim 1$ GeV = reduced mass)

Last two terms bounded from above by $\mu_{\psi_N} v^2/2$, $v \sim 10^{-3}$ so this is ${\cal O}({\rm keV})$

Dominated by $\mu - \mu_0$ which is $\mathcal{O}(MeV)$