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1 Maxwell’s equations and Lorentz invariance

In this problem we will write Maxwell’s equations using the field strength tensor Fµν to show
that they are Lorentz invariant. Show that

∂

∂xµ
F µν = 0 (1)

is equivalent to Gauss’ law and Ampère’s law (“inhomogeneous Maxwell’s equations”) in
vacuum. Note the implicit summation over the index µ. Argue that this equation is Lorentz
invariant.

Next, show the other two (“homogeneous”) Maxwell equations are given by

∂

∂xµ
F̃ µν = 0 (2)

where F̃ µν is the electromagnetic dual tensor. It is defined by F̃ µν = 1
2
εµνρσFρσ, where εµνρσ

is the totally antisymmetric symbol.
Equation 2 is in fact equivalent to the condition

∂

∂xµ
Fνρ +

∂

∂xν
Fρµ +

∂

∂xρ
Fµν = 0 (3)

(Bonus: prove they’re equivalent.) Because Fµν is antisymmetric, it can be written as

Fµν =
∂

∂xµ
Aν −

∂

∂xν
Aµ (4)

where Aµ = (φ, ~A) is the four-potential. By writing the field strength tensor in this way,
show that the homogeneous Maxwell equations are trivially satisfied.

Hints : The field strength tensor, in Cartesian coordinates, is related to the electric and
magnetic fields by

F µν =


0 −Ex −Ey −Ez
Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

 . (5)

The dual tensor F̃ µν can be obtained from F µν by replacing ~E with ~B and ~B with −~E.

1



Solution

Equation 1 is really four equations in one, one for each value of the index ν. First take ν = 0,
giving the equation ∂µF

µ0 = 0. Since F 00 = 0 and F i0 = Ei (with i = 1, 2, 3), we then find

0 = ∂xEx + ∂yEy + ∂zEz =∇ · ~E (6)

which is Gauss’ law in vacuum.
Next take ν = 1: ∂µF

µ1 = 0. Again, directly subsituting the components of F µ1 into this
equation yields

0 = ∂tEx − ∂yBz + ∂zBy. (7)

The ν = 2 and ν = 3 equations similarly give 0 = ∂tEy−∂zBx+∂xBz and 0 = ∂tEz−∂xBy+
∂yBx. We can neatly package these three equations into one as

0 =
∂~E

∂t
−∇× ~B (8)

which is Ampère’s law!
Now consider the homogeneous Maxwell equations. Equation 2 is the same as equation

1 with F µν replaced with the dual tensor F̃ µν . Explicitly, the components of the dual tensor
are

F̃ µν =


0 −Bx −By −Bz

Bx 0 Ez −Ey
By −Ez 0 Ex
Bz Ey −Ex 0

 . (9)

So we can be clever and just use our previous result, but replace ~E with ~B and ~B with −~E.
The ν = 0 equation then gives

∇ · ~B = 0 (10)

and the ν = 1, 2, 3 equations gives

0 =
∂~B

∂t
+∇× ~E. (11)

These are, of course, Gauss’ law for magnetism and Faraday’s law.
Now we write the field strength tensor as Fµν = ∂

∂xµ
Aν − ∂

∂xν
Aµ and substitute this

directly into the alternative formulation of the homogeneous Maxwell equations that I gave.
We find:

0 =
∂

∂xµ
Fνρ +

∂

∂xν
Fρµ +

∂

∂xρ
Fµν

=
∂

∂xµ
(
∂

∂xν
Aρ −

∂

∂xρ
Aν) +

∂

∂xν
(
∂

∂xρ
Aµ −

∂

∂xµ
Aρ) +

∂

∂xρ
(
∂

∂xµ
Aν −

∂

∂xν
Aµ).

(12)

This must vanish since partial derivatives commute. Being able to write Fµν in this form
follows merely from the fact that it is an antisymmetric tensor. So, we conclude that the
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homogeneous Maxwell equations are in fact a consequence of the antisymmetry of the field
strength tensor.

Finally, let us return to the question of Lorentz invariance. The quantity ∂µF
µν behaves

as a four-vector under Lorentz transformations. Maxwell’s equations in vacuum (equation
1) state that this quantity vanishes. If a four-vector is zero in one reference frame, it must
be zero in all reference frames. So, that equation is invariant under Lorentz transformations.
Furthermore, Fµν is antisymmetric in any reference frame, and so the homogeneous Maxwell
equations will be satisfied in any frame as well.

By the way, you may be thinking that the nice cancellation that occurred when we wrote
Fµν in terms of derivatives of Aµ hints at some deeper mathematical structure. Indeed,
it does! Electromagnetism can be formulated in the language of differential forms, where
Maxwell’s equations look even simpler than in our discussion today. You will probably
encounter this in your classes in the next few years.
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